Pivotal role of superoxides generated in the mitochondrial respiratory chain in peroxynitrite-dependent activation of phospholipase A2.
نویسندگان
چکیده
Exposure of PC12 cells to reagent peroxynitrite promotes the release of arachidonic acid (AA) mediated by activation of phospholipase A(2) [Guidarelli, Palomba and Cantoni (2000) Br. J. Pharmacol. 129, 1539-1542]. We now present experimental evidence consistent with the notion that this response is not directly triggered by peroxynitrite but, rather, by reactive oxygen species generated at the level of complex III of the mitochondrial respiratory chain. In particular, superoxide (and not hydrogen peroxide) has a pivotal role in peroxynitrite-dependent activation of phospholipase A(2). This observation was confirmed by results showing that superoxide, or peroxynitrite, promotes release of AA in isolated mitochondria. Consistently, the release of AA elicited by either peroxynitrite or A23187 in intact cells was shown to be calcium-dependent and differentially affected by phospholipase A(2) inhibitors with different levels of specificity. In particular, the effects of peroxynitrite, unlike those of A23187, were both sensitive to low concentrations of two general phospholipase A(2) inhibitors and insensitive to arachidonyltrifluoromethyl ketone, which shows some selectivity towards cytosolic phospholipase A(2). In addition, peroxynitrite and A23187 synergistically enhanced the release of AA. Collectively, the above results demonstrate that peroxynitrite causes inhibition of complex III, followed by enforced formation of superoxides that stimulate the activity of a calcium-dependent PLA(2) isoform, probably localized in the mitochondria.
منابع مشابه
Delayed formation of hydrogen peroxide mediates the lethal response evoked by peroxynitrite in U937 cells.
The toxicity paradigm used in the present study involves exposure of U937 cells to a concentration of authentic peroxynitrite, leading to a rapid necrotic response mediated by mitochondrial permeability transition. We found that addition of catalase after treatment with peroxynitrite specifically prevents the loss of mitochondrial membrane potential and the ensuing lethal response. The protecti...
متن کاملDexamethasone promotes toxicity in U937 cells exposed to otherwise nontoxic concentrations of peroxynitrite: pivotal role for lipocortin 1-mediated inhibition of cytosolic phospholipase A2.
Pretreatment with dexamethasone (Dex) was not toxic for U937 cells but caused a rapid lethal response upon subsequent exposure to otherwise nontoxic concentrations of peroxynitrite. This effect was not associated with enhanced formation of hydrogen peroxide taking place after peroxynitrite and was shown previously to play a pivotal role in the ensuing lethal response. Further analyses revealed ...
متن کاملInvolvement of the mitogen-activated protein kinase cascade in peroxynitrite-mediated arachidonic acid release in vascular smooth muscle cells.
Eicosanoid production is reduced when the nitric oxide (NO.) pathway is inhibited or when the inducible NO synthase gene is deleted, indicating that the NO. and arachidonic acid pathways are linked. We hypothesized that peroxynitrite, formed by the reaction of NO. and superoxide anion, may cause signaling events leading to arachidonic acid release and subsequent eicosanoid generation. Western b...
متن کاملActivation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression
Objective(s): The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family su...
متن کاملCalcium in renal cells. Modulation of calcium-dependent activation of phospholipase A2.
Calcium has been implicated as a regulatory factor in many physiological and pathophysiological processes in the renal cell. Under physiological conditions, the cytosolic free calcium concentration is maintained at approximately 100 nM. Most of the releasable cell Ca2+ resides in the nonmitochondrial compartments. In addition to the plasma membrane Ca2+ transport processes, there is a high-affi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 366 Pt 1 شماره
صفحات -
تاریخ انتشار 2002